Numerov extension of transparent boundary conditions for the Schrödinger equation in one dimension

نویسنده

  • Curt A. Moyer
چکیده

We describe an algorithm for animating time-dependent quantum wave functions in one dimension with very high accuracy. The algorithm employs the Crank–Nicholson approximation for the time dependence along with a Numerov extension of the discrete transparent boundary conditions described recently by Ehrhardt. We illustrate the power of this approach by simulating the decay of alpha particles from radioactive nuclei and the resonance scattering of electrons in a three-layer GaAs–GaAlAs sandwich. © 2004 American Association of Physics Teachers. @DOI: 10.1119/1.1619141#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A direct Numerov sixth order numerical scheme to accurately solve the unidimensional Poisson equation with Dirichlet boundary conditions

In this article, we present an analytical direct method, based on a Numerov three-point scheme, which is sixth order accurate and has a linear execution time on the grid dimension, to solve the discrete one-dimensional Poisson equation with Dirichlet boundary conditions. Our results should improve numerical codes used mainly in self-consistent calculations in solid state physics.

متن کامل

Discrete Transparent Boundary Conditions for the Schrödinger Equation

This paper is concerned with transparent boundary conditions for the one dimensional time–dependent Schrödinger equation. They are used to restrict the original PDE problem that is posed on an unbounded domain onto a finite interval in order to make this problem feasible for numerical simulations. The main focus of this article is on the appropriate discretization of such transparent boundary c...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

Discrete Transparent Boundary Conditions for Schrödinger–type equations for non–compactly supported initial data

Transparent boundary conditions (TBCs) are an important tool for the truncation of the computational domain in order to compute solutions on an unbounded domain. In this work we want to show how the standard assumption of ‘compactly supported data’ could be relaxed and derive TBCs for a generalized Schrödinger equation directly for the numerical scheme on the discrete level. With this inhomogen...

متن کامل

Cubic spline Numerov type approach for solution of Helmholtz equation

We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004